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Fixed Viewpoint Mirror Surface Reconstruction
under an Uncalibrated Camera

Kai Han, Miaomiao Liu, Dirk Schnieders, and Kwan-Yee K. Wong

Abstract—This paper addresses the problem of mirror surface
reconstruction, and proposes a solution based on observing the
reflections of a moving reference plane on the mirror surface.
Unlike previous approaches which require tedious calibration,
our method can recover the camera intrinsics, the poses of the
reference plane, as well as the mirror surface from the observed
reflections of the reference plane under at least three unknown
distinct poses. We first show that the 3D poses of the reference
plane can be estimated from the reflection correspondences
established between the images and the reference plane. We then
form a bunch of 3D lines from the reflection correspondences, and
derive an analytical solution to recover the line projection matrix.
We transform the line projection matrix to its equivalent camera
projection matrix, and propose a cross-ratio based formulation
to optimize the camera projection matrix by minimizing repro-
jection errors. The mirror surface is then reconstructed based
on the optimized cross-ratio constraint. Experimental results on
both synthetic and real data are presented, which demonstrate
the feasibility and accuracy of our method.

Index Terms—Mirror surface, reconstruction, reflection, light
path.

I. INTRODUCTION

3D reconstruction of diffuse surfaces has enjoyed tremen-
dous success. These surfaces reflect light from a single

incident ray to many rays in all directions, resulting in a
constant appearance regardless of the observer’s viewpoint.
Methods for diffuse surface reconstruction can therefore rely
on the appearance of the object.

This paper considers mirror surfaces, which exhibit specular
reflections and whose appearances are a reflection of the
surrounding environment. Under (perfect) specular reflection,
an incoming ray is reflected to a single outgoing ray. This
special characteristic makes the appearance of a mirror surface
viewpoint dependent, and renders diffuse surface reconstruc-
tion methods useless. Meanwhile, there exist many objects
with a mirror surface in the man-made environment. The
study of mirror surface reconstruction is therefore an important
problem in computer vision.

In this paper, we assume the mirror surface reflects a light
ray only once, and tackle the mirror surface reconstruction
problem by adopting a common approach of introducing
motion to the environment. Unlike previous methods which
require a fully calibrated camera and known motion, we
propose a novel solution based on observing the reflections
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Fig. 1. Real mirror surface reconstruction setup. (a) A stationary uncalibrated
camera observing the reflections of a reference plane placed at three distinct
locations. (b) Surface points can be recovered using the cross-ratio between
a surface point M and its reflection correspondences {X0,X1,X2} on the
reference plane at three different locations.

of a reference plane undergoing an unknown motion with
a stationary uncalibrated camera (see Fig. 1(a)). Note that
the checkerboard pattern in Fig. 1(a) is used here only to
demonstrate the overall reflection effects of the mirror surface.
In our experiment, we display vertical and horizontal sweeping
lines (e.g., the bottom row in Fig. 18) to establish reflection
correspondences between images and the reference plane.

We first show that the relative poses of the reference
plane can be estimated from the reflection correspondences
established between the images and the reference plane under
three unknown distinct poses. This enables us to construct
a 3D ray piercing the reference plane at specific positions
under different poses for each image point on the mirror
surface. Given the set of 3D rays and their corresponding
image points, we derive an analytical solution to recover
the camera projection matrix through estimating the line
projection matrix, which can be easily transformed back into a
corresponding camera projection matrix. To make our solution
more robust to noise, we use this closed-form solution as an
initialization and optimize the camera projection matrix by
minimizing reprojection errors computed based on a cross-
ratio formulation for the mirror surface (see Fig. 1(b)). The
mirror surface is then reconstructed based on the optimized
cross-ratio constraint. The key contributions of this work are

1. To the best of our knowledge, the first mirror surface
reconstruction solution under an unknown motion of a
reference plane and an uncalibrated camera.

2. A closed-form solution for recovering the relative 3D
poses of the reference plane from reflection correspon-
dences.

3. A closed-form solution for estimating the camera pro-
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jection matrix from reflection correspondences.
4. A cross-ratio based nonlinear formulation that allows

a robust estimation of the camera projection matrix
together with the mirror surface.

We have presented preliminary results of this work in
[1]. This paper extends [1] as follows: 1) We include more
experimental results. In particular, we reconstructed a mirror
hood and the results, in terms of quality, are similar to those of
the previous experiments. This further validates the effective-
ness of our approach. 2) We include details of the reference
plane pose estimation from reflection correspondences and
the related experimental results to make our work more self-
contained. 3) We quantify the surface of an object that can
be reconstructed using our method by deriving a relation
among the surface normal, the distance between the reference
plane and the surface, and the size of the reference plane.
4) We include discussions on the degeneracy as well as the
limitations of our methods. 5) We describe the conversion
between the point projection matrix and the line projection
matrix in detail.

The rest of the paper is organized as follows. Section II
briefly reviews existing techniques in the literature for shape
recovery of mirror surfaces. Section III describes our data
acquisition setup and our closed-form solution for 3D poses
estimation of the reference plane. Section IV introduces our
closed-form solution for camera projection matrix estimation.
Section V describes our cross-ratio based nonlinear formula-
tion. Section VI quantifies the surface that can be reconstructed
by our method and discusses the degeneracy. Experimental
results are presented in Section VII, followed by conclusions
in Section VIII.

II. RELATED WORK

Great efforts have been devoted to the problem of mirror
surface recovery [2], [3], [4]. Based on the assumed prior
knowledge, shape recovery methods for mirror surfaces can
be classified into those assuming an unknown distant envi-
ronment and those assuming a known nearby environment.

Under an unknown distant environment, a set of methods
referred to as shape from specular flow (SFSF) have been
proposed. In [5], Oren and Nayar successfully recovered a 3D
curve on the object surface by tracking the trajectory of the
reflection of a light source on the mirror surface. However, it
is difficult to track a complete trajectory since the reflected
feature will be greatly distorted near the occluding boundary
of an object. Roth and Black [6] introduced the concept of
specular flow and derived its relation with the 3D shape of
a mirror surface. Although they only recovered a surface
with a parametric representation (e.g., sphere), their work
provided a theoretical basis for the later methods. In [7], [8],
Adato et al. showed that under far-field illumination and large
object-environment distance, the observed specular flow can be
related to surface shape through a pair of coupled nonlinear
partial differential equations (PDEs). Vasilyev et al. [9] further
suggested that it is possible to reconstruct a smooth surface
from one specular flow by inducing integrability constraints on
the surface normal field. In [10], Canas et al. reparameterized

the nonlinear PDEs as linear equations and derived a more
manageable solution. Although SFSF achieves a theoretical
breakthrough in shape recovery of mirror surfaces, the is-
sues in tracking dense specular flow and solving PDEs still
hinder their practical use. In [11], Sankaranarayanan et al.
developed an approach that uses sparse specular reflection
correspondences instead of specular flow to recover a mirror
surface linearly. Their proposed method is more practical
than the traditional SFSF methods. Nevertheless, their method
requires quite a number of specular reflection correspondences
across different views, which are difficult to obtain due to the
distorted reflections on the mirror surface.

Under a known nearby environment, a different set of
methods for shape recovery of mirror surfaces can be derived.
The majority of these methods are based on the smoothness
assumption on the mirror surface. Under this assumption, one
popular way is to formulate the surface recovery into the
problem of solving PDEs. In [12], [13], Savarese and Perona
demonstrated that local surface geometry of a mirror surface
can be determined by analyzing the local differential properties
of the reflections of two calibrated lines. Following the same
fashion, Rozenfeld et al. [14] explored the 1D homography
relation between the calibrated lines and the reflections using
sparse correspondences. Depth and first order local shape
are estimated by minimizing a statistically correct measure,
and a dense 3D surface is then constructed by performing
a constrained interpolation. In [15], Liu et al. proved that
a smooth mirror surface can be determined up to a two-
fold ambiguity from just one reflection view of a calibrated
reference plane. Another way to formulate the mirror surface
recovery is by employing normal consistency property to refine
visual hull and/or integrate normal field. In [16], Bonfort and
Sturm introduced a voxel carving method to reconstruct a
mirror surface using a normal consistency criterion derived
from the reflections of some calibrated reference planes. In
order to get a better view for shape recovery, they further
proposed that the camera does not need to face the reference
plane, and the shape can be well recovered by using a mirror
to calibrate the poses of the reference plane [17], [18]. In
[19], Nehab et al. formulated the shape recovery as an image
matching problem by minimizing a cost function based on
normal consistency. In [20], Weinmann et al. employed a
turntable setup with multiple cameras and displays, which
enables the calculation of the normal field for each reflection
view. The 3D surface is then estimated by a robust multi-
view normal field integration technique. In [21], Balzer et
al. deployed a room-sized cube consisting of six walls that
encode/decode specular correspondences based on a phase
shift method. The surface is then recovered by integration
of normal fields. Tin et al. [22] introduced a two-layer LCD
setup, which contains a pair of perpendicular linear polarizers
for establishing correspondences between the illumination rays
and camera rays. After calibrating the camera and LCDs, the
surface can be reconstructed by solving a joint optimization
problem. In [23], Lu et al. introduced a setup to generate a
polarization field using a commercial LCD with the top polar-
izer removed and modeled the liquid crystals as polarization
rotators. Another approach is to reconstruct the individual light
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paths based on the law of reflection. Kutulakos and Steger [24]
showed that a point on a mirror surface can be recovered if
the positions of two reference points are known in space and
reflected to the same image point in a single view, or the
positions of two reference points are known and are reflected
by the same surface point to two different views.

Note that calibration plays an important role in all the
above methods that assume a known nearby environment.
Commonly, a reference plane with a known pattern is used as
the known environment. In order to produce a good view of its
reflections on the specular surface, the reference plane is often
placed side-by-side with the camera. This results in the camera
not being able to see the reference plane directly, making
the calibration of the setup non-trivial. Traditional methods
calibrate the poses of the reference plane by introducing an
extra reference plane in the field of view of the camera, and an
extra camera looking at both reference planes. In [18], Sturm
and Bonfort used a planar mirror to allow the camera to see the
reference plane through reflection. The pose of the reference
plane can be obtained by placing the auxiliary mirror in at least
three different positions. Generally, multiple reference plane
positions are needed for recovering a large area of the mirror
surface. However, the literature becomes comparatively sparse
when it comes to automatic pose estimation of the reference
plane in mirror surface recovery. Liu et al. [25] proposed
an automatic motion estimation method by constraining the
motion of the reference plane to a pure translation. Although
they can achieve a simple closed-form solution for the motion
estimation problem, their method cannot handle general mo-
tion. Besides, their method requires calibrating the intrinsics
of the camera as well as the initial pose of the reference
plane. In fact, most, if not all, of the methods that assume
a known nearby environment require the camera(s) to be
fully calibrated. In contrast, we neither require the calibration
of the reference plane poses, nor require the calibration of
the camera, and make no assumption on the smoothness of
the mirror surface. Our proposed approach can automatically
calibrate the setup as well as reconstruct the mirror surface
using the observed reflections of the reference plane.

A cross-ratio constraint has been used to estimate mirror
position and camera pose for axial non-central catadioptric
systems [26], [27], and produce more point correspondences
in the context of 3D reconstruction [28]. In this work, we
incorporate cross-ratio constraint in our formulation to simul-
taneously optimize the camera projection matrix and recover
the mirror surface.

III. ACQUISITION SETUP AND PLANE POSE ESTIMATION

A. Acquisition Setup

Figure 2 shows the setup used for mirror surface reconstruc-
tion. Consider a pinhole camera centered at C observing the
reflections of a moving reference plane on a mirror surface
S. Let X0 be a point on the plane at its initial pose, denoted
by P0, which is reflected by a point M on S to a point m
on the image plane I . Suppose the reference plane undergoes
an unknown rigid body motion, and let P1 and P2 denote the
plane at its two new poses. Let X1 and X2 be points on P1

and P2, respectively, which are both reflected by M on S to
the same image point m on I . X0, X1 and X2 are referred
to as reflection correspondences of the image point m. Since
reflection correspondences must lie on the same incident ray, it
follows that they must be colinear in 3D space. This property
will be used to derive a constraint for computing the poses
of the moving reference plane relative to its initial pose (see
Section III-B).
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Fig. 2. Setup used for mirror surface reconstruction. A pinhole camera
centered at C observes the mirror surface S which reflects a moving reference
plan placed at three different locations P0, P1 and P2. Refer to Section III-A
for notations and definitions.

B. Plane Pose Estimation
Referring to the setup shown in Fig. 2. Let the rigid body

motion between P0 and P1 be denoted by (R1
,T

1), where
R

1 and T
1 are the rotation (matrix) and translation (vector)

respectively. Similarly, let (R2
,T

2) denote the rigid body
motion between P0 and P2. Let X0, X1, and X2 be points
on P0, P1 and P2, respectively, that lie on the same incident
light path. The 2D coordinates of Xi on the plane are X

p
i =

[xpi y
p
i 0]T, where i ∈ {0, 1, 2}. Their 3D coordinates,

Xi = [xi yi zi]T, i ∈ {0, 1, 2}, w.r.t P0 can be written as

X0 = X
p
0 = [x0 y0 z0]T = [x0 y0 0]T ,

X1 = R
1
X

p
1 +T

1
=MX̄

p
1 ,

X2 = R
2
X

p
2 +T

2
= N X̄

p
2 ,

where M = [R1
∗1 R

1
∗2 T

1], N = [R2
∗1 R

2
∗2 T

2], X̄
p
i =

[xpi y
p
i 1]T, and R

i
∗j denotes the jth column of R

i
, i ∈

{1, 2}, j ∈ {1, 2}. The unknown motion parameters are now
embedded in M and N . Since X0, X1 and X2 are colinear,
it follows that

x1 − x0
x2 − x0

=
y1 − y0
y2 − y0

=
z1 − z0
z2 − z0

,

M1∗X̄
p
1 − x0

N1∗X̄
p
2 − x0

=
M2∗X̄

p
1 − y0

N2∗X̄
p
2 − y0

=
M3∗X̄

p
1

N3∗X̄
p
2

,
(1)

where Mi∗ and Ni∗ denote the ith row of M and N
respectively. The following two constraints can be derived
from Equation (1):

{(X̄
p
2)TAX̄

p
1 − x0(X̄

p
2)TNT

3∗ + x0(X̄
p
1)TMT

3∗ = 0,

(X̄p
2)TBX̄

p
1 − y0(X̄

p
2)TNT

3∗ + y0(X̄
p
1)TMT

3∗ = 0,
(2)
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where A = NT
3∗M1∗ − NT

1∗M3∗ and B = NT
3∗M2∗ −

NT
2∗M3∗.
Given 3 ×m points X̄

p
ij = [xpij y

p
ij zi]

T, where 0 ≤ i ≤ 2,
1 ≤ j ≤ m, z0 = 0 and zi∈{1,2} = 1, we can formulate the
problem as solving a linear system

EW = 0, (3)

where

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(X̄p
21)T⊗(X̄p

11)T 0
T −x

p
01(X̄p

21)T −x
p
01(X̄p

11)T

0
T (X̄p

21)T⊗(X̄p
11)T −y

p
01(X̄p

21)T −y
p
01(X̄p

11)T
⋮ ⋮ ⋮ ⋮

(X̄p
2m)T⊗(X̄p

1m)T 0
T −x

p
0m(X̄p

2m)T −x
p
0m(X̄p

1m)T

0
T (X̄p

2m)T⊗(X̄p
1m)T −y

p
0m(X̄p

2m)T −y
p
0m(X̄p

1m)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W = [A1∗ A2∗ A3∗ B1∗ B2∗ B3∗ N3∗ M3∗ ]T , (4)

Ai∗ and Bi∗ denote the ith row of A and B respectively, and ⊗
denotes Kronecker tensor product. W contains 24 unknowns
in total. Since each incident ray provides two constraints,
we need at least 12 incident rays (i.e., 3 × 12 reflection
correspondences) to solve all the unknowns.

Note that the 21st and 24th columns of E are identical, the
nullity of E must be two in order to have a non-trivial solution.
Therefore, we first apply SVD to get a solution space spanned
by two solution basis vectors, d1 and d2. We then parameterize
W as

W = α(d1 + βd2), (5)

where α and β are two scale parameters. Now there are 26
unknowns in total. By enforcing the element-wise equality
of Equation (4) and Equation (5), we have 18 bilinear and
6 linear equations to solve M, N , α and β. Furthermore, we
have rank(NT

3∗M1∗) ≤ 1 and rank(−NT
1∗M3∗) ≤ 1 since

rank(NT
3∗M1∗) ≤ min(rank(NT

3∗), rank(MT
1∗)) = 1.

Thus,

rank(A) = rank(NT
3∗M1∗ −NT

1∗M3∗)
≤ rank(NT

3∗M1∗) + rank(−NT
1∗M3∗)

≤ 2.

Similarly, we can show rank(B) ≤ 2. Obviously, not all of
the obtained constraints are independent, and new constraints
should be applied in order to solve all the unknowns. Since
the first two columns of M and N come from the first
two columns of R

1 and R
2 respectively, the orthonomality

property will provide 6 extra constraints, which leads to a
closed-form solution for the unknown motion parameters and
the two scale parameters. We use the Symbolic Math Toolbox
in Matlab to solve them (refer to the supplementary for more
details).

IV. PROJECTION MATRIX ESTIMATION

In this section, we first briefly review the line projection
matrix. We then derive a linear method for obtaining a closed-
form solution to the line projection matrix of a camera from
the reflection correspondences.

A. Line Projection Matrix

Using homogeneous coordinates, a linear mapping can be
defined for mapping a point X in 3D space to a point x in a
2D image, i.e.,

x = PX, (6)

where P is a 3 × 4 matrix known as the camera (point)
projection matrix. Similarly, using Plücker coordinates1, a
linear mapping can be defined for mapping a line L in 3D
space to a line l (in homogeneous coordinates) in a 2D image,
i.e.,

l = PL̄, (7)

where P is a 3×6 matrix known as the line projection matrix
and L̄ is the dual Plücker vector2 of L. Note that each row
Pi∗ (i ∈ {1, 2, 3}) of P represents a plane (in homogeneous
coordinates) that intersects at the optical center. Dually, each
row Pi∗ (i ∈ {1, 2, 3}) of P represents a line that intersects
at the optical center (see Fig. 3). It follows that a valid line
projection matrix must satisfy

Pi∗ ⋅ P̄j∗ = 0 ∀ i, j ∈ {1, 2, 3}⇔ PP̄T
= 03,3, (8)

where P̄ = [P̄T
1∗ P̄T

2∗ P̄T
3∗]T.
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Fig. 3. Visualization of the point and line projection matrices. (a) Rows of
a point projection matrix represent planes that intersect at the optical center
C of the camera. (b) Dually, rows of a line projection matrix represent lines
that intersect at the optical center.

A line projection matrix can be converted to its correspond-
ing camera (point) projection matrix, and vice versa. Details
of the conversion are given in the supplementary.

B. Estimating the Line Projection Matrix

To estimate the line projection matrix of the camera, we
first apply our method described in Section III-B to recover
the relative poses of the reference plane under three distinct
poses using reflection correspondences established between
the images and the reference plane. We can then form a 3D
Plücker line L from the reflection correspondences of each
observed point x in the image. Note that, by construction, x
must lie on the projection of L, i.e.,

x
TPL̄ = 0. (9)

1A brief review of Plücker coordinates is given in the supplementary.
2Given a Plücker vector L = [l1 l2 l3 l4 l5 l6]T, its dual Plücker vector

is L̄ = [l5 l6 l4 l3 l1 l2]T.
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Given a set of 3D space lines {L1, ...,Ln} constructed for a
set of image points {x1, ...,xn}, the constraint derived in (9)
can be arranged into

Zp = 0, (10)

where p = [P1∗ P2∗ P3∗]T and

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
T
1 ⊗ L̄T

1

⋮

x
T
n ⊗ L̄T

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

The line projection matrix of the camera can then be estimated
by solving

argmin
p

∥Zp∥2 (12)

subject to ∥p∥ = 1. The line projection matrix thus obtained
can be transformed into a point projection matrix and vice
versa. Note that, however, (12) minimizes only algebraic
errors and does not enforce (8). The solution to (12) is
therefore subject to numerical instability and not robust in the
presence of noise. Instead of solving (12), we can minimize
the geometric distance from each image point to the projection
of the corresponding 3D line. Let l = [a, b, c]T = PL̄ be the
projection of the 3D line L corresponding to an image point
x = [x1, x2, x3]T. P can be estimated by solving

argmin
P

n

∑
i=1

(xT
i PL̄i)2

ai
2 + bi

2
(13)

subject to ∥P∥ = 1, where ∥P∥ is the Frobenius norm of P .
A straight-forward approach to enforce (8) is by incorporating
it as a hard constraint in (13). However, experiments using
a number of state-of-the-art optimization schemes show that
such a solution often converges to local minima.

C. Enforcing Constraints

Given a proper camera projection matrix, the corresponding
line projection matrix will automatically satisfy (8). However,
given an improper 3 × 6 line projection matrix not satisfy-
ing (8), the corresponding camera projection matrix cannot
be decomposed into one with proper intrinsic and extrinsic
parameters. Based on this observation, we propose to enforce
(8) through ensuring a proper decomposition of the camera
projection matrix.

Consider a simplified scenario where the principal point
(u0, v0) (which is often located at the image centre) is known.
After translating the image origin to the principal point, the
camera projection matrix can be expressed as

P = K[R T] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fx 0 0
0 fy 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the corresponding line projection matrix (refer to the
supplementary for the conversion) can be expressed as

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fy 0 0
0 fx 0
0 0 fxfy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
P ′
, (14)

where

P ′T
i∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
′
i1

ρ
′
i2

ρ
′
i3

ρ
′
i4

ρ
′
i5

ρ
′
i6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)(i+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rj3tk − tjrk3
tjrk2 − rj2tk
rj2rk3 − rj3rk2
rj1tk − tjrk1
rj1rk2 − rj2rk1
rj1rk3 − rj3rk1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

with i ≠ j ≠ k ∈ {1, 2, 3} and j < k. (10) can then be
rewritten as

Zp = ZDp
′
= Z

′
p
′
= 0, (16)

where p
′
= [P ′

1∗ P ′
2∗ P ′

3∗]T, Z
′
= ZD and D is a 18 × 18

diagonal matrix with dii = fy for i ∈ {1, ..., 6}, dii = fx for
i ∈ {7, ..., 12}, and dii = fxfy for i ∈ {13, ..., 18}.

With known fx and fy , p
′ can be estimated by solving

(16). Since P ′ only depends on the elements of R and T,
it can be converted to a point projection matrix (refer to the
supplementary for the conversion) in the form of λ[R T].
The magnitude of λ is determined by the orthogonality of R,
and its sign is determined by the sign of t3. Hence, given the
camera intrinsics, the camera extrinsics can be recovered using
the reflection correspondences.

In Section V, we tackle the problem of unknown camera
intrinsics by formulating the problem into a nonlinear opti-
mization by minimizing reprojection errors computed based
on a cross-ratio formulation for the mirror surface. For ini-
tialization purpose, we assume (u0, v0) being located at the
image center, and fx = fy = f . We choose a rough range of f
and for each sample value of f within the range, we estimate
R and T by solving (16). The point to line distance criterion
in (13) is applied to find the best focal length f

′. A camera
projection matrix can then be constructed using f

′, (u0, v0),
R and T that satisfies all the above mentioned constraints.

V. CROSS-RATIO BASED FORMULATION

In this section, we obtain the camera projection matrix and
the mirror surface by minimizing reprojection errors. We will
derive a cross-ratio based formulation for recovering a 3D
point on the mirror surface from its reflection correspondences.
Note that minimizing point-to-point reprojection errors can
provide a stronger geometrical constraint than minimizing the
point-to-line distances in (13) (see Fig. 4).

Consider a point M on the mirror surface (see Fig. 5). Let
X0, X1 and X2 be its reflection correspondences on the refer-
ence plane under three distinct poses, denoted by P0, P1 and
P2, respectively. Suppose M, X0, X1 and X2 are projected to
the image as m, x0, x1 and x2 respectively. We observe that
the cross-ratios {M,X0; X1,X2} and {m,x0; x1,x2} must
be identical, i.e.,

∥−−−−⇀X1M∥∥−−−−⇀X2X0∥
∥−−−−⇀X1X0∥∥

−−−−⇀
X2M∥

=
∥−−−⇀x1m∥∥−−−⇀x2x0∥
∥−−−⇀x1x0∥∥−−−⇀x2m∥

, (17)

where
−−⇀
AB denotes the directed ray (vector) from A to B

and ∥−−⇀AB∥ is the length of the vector. Let s be the distance
between X2 and M (i.e., s = ∥−−−−⇀X2M∥), from (17)

s =
∥−−−−−⇀X2X1∥∥

−−−−−⇀
X2X0∥∥−−−−⇀x1x0∥∥−−−⇀x2m∥

∥−−−−−⇀X2X0∥∥−−−−⇀x1x0∥∥−−−⇀x2m∥−∥−−−−−⇀X1X0∥∥−−−−⇀x2x0∥∥−−−⇀x1m∥
. (18)
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Fig. 4. Minimizing point-to-line distance does not guarantee minimizing
point-to-point distance. A 3D point M and a 3D line L passing through
it are projected by P to a 2D point mr and a 2D line l, respectively. Let m
denote the observation of M. The distance between m and mr is dp, and
the distance between m and l is dl. Suppose the same 3D point M and 3D
line L are projected by P ′ to m

′
r and l

′, respectively. The distance between
m and m

′
r is d′p, and the distance between m and l

′ is d′l. Note that d′l < dl,
but d′p > dp.
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Fig. 5. Cross-ratio constraint. Camera projection matrix and mirror surface
points are recovered by minimizing reprojection errors computed from the
cross-ratio constraint {M,X0; X1, X2} = {m, x0; x1, x2}, where X0,
X1, X2 are the reflection correspondences of M on the reference plane
under three different poses (i.e., P0, P1 and P2) and m, x0, x1, x2 are their
projections on the image plane. Note that X0, X1, X2 may not be visible
to the camera.

Given the projection matrix, x0, x1, x2 and m, the surface
point M can be recovered as

M = X2 + s

−−−−⇀
X2X0

∥−−−−⇀X2X0∥
. (19)

We optimize the projection matrix by minimizing the repro-
jection errors, i.e.,

argmin
θ

n

∑
i=1

(mi −m
′
i)2, (20)

where mi is the observation of Mi, m
′
i = P(θ)Mi, and θ =

[fx fy u0 v0 rx ry rz tx ty tz]T 3. To obtain s in (18), we
also project the three reflection correspondences of mi to the
image using P(θ). We initialize θ using the method proposed
in Section IV, and solve the optimization problem using the
Levenberg-Marquardt method. Given the estimated projection
matrix, the mirror surface can be robustly reconstructed by
solving (17)-(19).

VI. DISCUSSION

A. Object Analysis

We analyze the surface points that can be reconstructed by
our proposed method using an example as shown in Fig. 6,
where a fixed camera centered at C is viewing a mirror
surface S, and a reference plane XY is placed beside the
surface. Consider the visual ray

−−−⇀
CM of a pixel q for the

surface point M. The angle between the incident ray and
the reflected ray (visual ray) will restrict the surface point
that can be reconstructed by our method. Given a reference
plane XY as in Fig. 6, the minimum angle between the
incident ray and the reflected ray is ∠CMX leading to a
surface normal

−−−⇀
MU, while the maximum angle is ∠CMY

leading to a surface normal
−−−⇀
MV. The surface point M can

be reconstructed by our method when its normal lies in the
range between

−−−⇀
MU and

−−−⇀
MV. This range can be represented

as the angle ∆ = ∠UMV, which is related to the distance
between the surface and the reference plane, the size of the
reference plane, and the relative pose between the camera and
the reference plane.

S

C

M

O

X

Y

UV

q .
.

.
.

.

Fig. 6. A camera centered at C observes a mirror surface S and a reference
plane XY is placed beside the surface.

−−−⇀
CM is the reflected ray (i.e., the

visual ray of the pixel q) through the surface point M. If
−−−⇀
XM is the incident

ray, the normal at M is
−−−⇀
MU, which is the bisector of ∠CMX. Similarly,

if
−−−⇀
YM is the incident ray, the normal at M is

−−−⇀
MV, which is the bisector

of ∠CMY.

Let ∠CMO = θ, ∥−−−⇀MO∥ = h, ∥−−⇀XO∥ = w1, and ∥−−⇀YO∥ =
w2. According to the law of reflection, we have

∠CMU =
1

2
(θ − tan−1w1

h
), (21)

∠CMV =
1

2
(θ + tan−1w2

h
). (22)

3We used angle-axis representation for rotation, i.e., [rx ry rz]T = τe,
where τ is the rotation angle and e is the unit rotation axis.
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It follows that
∆ = ∠CMV − ∠CMU

= tan
−1w1

h
+ tan

−1w2

h
.

(23)

From (23), we can see that a larger size of the reference
plane and/or a closer distance between the surface and the
reference plane will result in a larger surface region that can
be reconstructed by our method. Note that however according
to (21), it is not necessary for w1 to be infinite large as we
have to ensure ∠CMU ≥ 0 (i.e., w1 ≤ h × tanθ ) otherwise
the camera will not perceive the reflected ray

−−−⇀
CM.

Thus, we can conclude that if the surface normals are dis-
tributed within the range defined by ∆, the whole surface can
be reconstructed by our method. For a surface with a broader
normal distribution, we can recover it by increasing the ∆
range via using a large enough reference plane and placing the
reference plane at a location not too far away from the surface.
In addition, placing the reference plane at multiple locations
facing different (visible) regions of the object can also help
enlarge the region that can be reconstructed. Alternatively, a
cubic room like the one built in [21] can be used to enlarge
the normal range that can be reconstructed by our method.
However, our method requires moving each side of the room
to three different locations, which makes it difficult to build
such a room.

In addition, we discuss the relationship among the object
size, distance from the camera to the object, and distance
from the reference plane to the object as shown in Fig. 7.
A camera centered at C observes the mirror surface S.

−−−−⇀
M1V

and
−−−−⇀
M2U are the normals at surface points M1 and M2.

For simplicity, let
−−−−−⇀
M1M2 ∥ −−⇀

XY. We then construct points
A and B with

−−⇀
CA ⊥

−−−−−⇀
M1M2 and

−−⇀
AB ⊥

−−⇀
XY. A virtual

camera center at Cv can be formed by extending
−−−−⇀
YM1 and

−−−−⇀
XM2. Let ∥−−⇀CA∥ = h1, ∥−−⇀AB∥ = h2, ∥−−−−−⇀M1M2∥ = s1,

and ∥−−⇀XY∥ = s2, we have ∥−−−−⇀CvA∥
∥−−−−⇀CvA∥+∥−−−⇀AB∥

=
∥−−−⇀CA∥

∥−−−⇀CA∥+∥−−−⇀AB∥
=

h1

h1+h2
=

∥−−−−−−⇀M1M2∥
∥−−−⇀XY∥

=
s1
s2

. The maximum size of the surface
that can be reconstructed by our method is then approximated
by s1 =

h1s2
h1+h2

. Note that we use a planar surface S here
only for discussion, while planar surfaces correspond to the
degenerate case of our method as will be discussed next. As
long as there are some normal variations between M1 and M2

on S, the above discussion is still a valid approximation.

S

C
XY

UV

.

.

. .

.Cv

.

M1 AM2

B

Fig. 7. The relationship among the object size, distance from the camera to
the object, and distance from the reference plane to the object.

Lastly, it is worth noting that we assume the surface is
perfectly reflective and our formulation depends on the law

of reflection. Therefore, our method may not work for other
mirror-like surfaces that do not follow the law of reflection.
Meanwhile, for some mirror objects, the energy of the incident
rays are not fully reflected due to the surface material. For
such cases, the brightness of the sweeping stripes for corre-
spondence estimation will be low, bringing more difficulties in
identifying the peak from the intensity profile (see Fig. 8), thus
reducing the accuracy of camera projection matrix estimation
and shape reconstruction.

in
te

ns
ity

stripe identity

k

Fig. 8. An example of intensity profile. The red curve denotes the case that
all energy of the incident ray is reflected. Thus the peak (i.e., k-th stripe) is
sharper and easier to identify (small uncertainty). While the blue cure denotes
the case that only part of the energy is reflected, resulting in a relatively flat
profile, whose peak is more difficult to determine (large uncertainty).

B. Degeneracy

In order to obtain 3D line correspondences, we proposed
the method in Section III-B to estimate relative poses of the
reference plane. However, there do exist degenerate cases. In
particular, the relative poses of the reference plane cannot be
uniquely determined in the following cases: (1) The specular
object is of a planar, elliptical, parabolic or hyperbolic mirror;
and (2) the arrangement of such mirror surfaces and the
pinhole camera forms a central catadioptric system; namely the
pinhole camera and the mirror surfaces form a single effective
viewpoint. If the unknown mirror surface and the camera form
a central catadioptric system with a single effective viewpoint,
the relative pose estimation between reference planes (e.g.,
P0, P1, P2) is equivalent to the camera calibration process
described in [29]. As demonstrated in [29], the poses cannot
be determined if the reference plane undergoes pure translation
without knowing the translation direction. If the reference
plane is placed at three general positions, the poses are
estimated up to one scale ambiguity. As analysed in [30],
a pinhole camera viewing a sphere does not form a central
catadioptric system in general if the distance between the
pinhole and effective viewpoint is larger than the radius. If the
camera is located at the centre of the sphere, it indeed forms
a central catadioptric system, which however differs from our
experimental setup.

In addition, when {m,x0; x1,x2} in Fig. 5 are close to
each other, while {M,X0; X1,X2} are further away to each
other, our cross-ratio based formulation will be more sensitive
to noise and a small error in the pixel domain will result in
a large error in 3D points estimation. Actually, this is on par
with small baseline triangulation as described in [31], which
is generally more sensitive to noise.
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VII. EVALUATION

To demonstrate the effectiveness of our method, we evaluate
it using both synthetic and real data. We first evaluate the
effectiveness of our proposed approach for estimating the
relative poses of the reference plane (Section III-B). We
then show that our approach can faithfully reconstruct the
mirror surfaces. The source code of our method can be found
at https://github.com/k-han/mirror.

A. Relative Pose Estimation of the Reference Plane

To evaluate the performance of our reference plane pose
estimation presented in Section III-B, we generated synthetic
data using two spheres. The spheres have a radius of 300 mm.
The reference plane used has a dimension of 2000×2000 mm2

and was placed at three different poses denoted by P0, P1, and
P2 respectively. The reflection correspondences were obtained
via ray tracing. To evaluate the robustness of our method, we
added Gaussian noise to the reflection correspondences on the
reference plane with standard deviations ranging from 0 to
3.0 mm. The errors were reported as the average value over
50 trials of the experiments for each noise level (Gaussian
noise standard deviation). Specifically, we reported the errors
in the relative rotation matrix R in terms of the angle of the
rotation induced by RgtR

T, where Rgt denotes the ground
truth rotation matrix. We reported the errors in the translation
vector T in terms of the angle (Tdeg) between T and Tgt,
where Tgt denotes the ground truth translation vector and
Tscale = ∥Tgt − T∥. In Fig. 9, we show the estimation
errors for (R1, T

1) and (R2, T
2). It can be seen that the

errors increase with the noise level, while the magnitude of
the errors are quite small, demonstrating that our relative pose
estimation method is robust to the noise.
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Fig. 9. Noise sensitivity analysis for relative pose estimation of the reference
plane. The red curves and blue curves are the pose estimation errors for P1

and P2, respectively, under different noise levels. (a) Relative rotation error.
(b) Translation angular error. (c) Translation scale error.

B. Recovery of Projection Matrix and Mirror Surface

1) Synthetic Data Experiments: We employed a reflec-
tive Stanford bunny and a reflective engine hood created by
[21] to generate our synthetic data. The bunny has a dimension
of 880×680×870 mm

3 and 208, 573 surface points, while the
hood has a dimension of 2120×1180×270 mm

3 and 38, 546
surface points. The images have a resolution of 960 × 1280
pixels. Figure 10(a) shows the reflective appearances of the
bunny and the hood. In their original data, the bunny (hood)
was placed in a cubic room, with each side of the room
working as a reference plane. The reference plane has a

dimension of 3048× 3048 mm
2. The center of the room was

defined as the world origin. A camera was placed in the room
viewing the bunny (hood). Since our method requires reflection
correspondences under three distinct poses of the reference
plane, we introduced two additional planes for each side of
the room and obtained the reflection correspondences through
ray tracing.
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Fig. 10. RMS errors for the mirror Stanford bunny (first row) and engine
hood (second row). (a) An image of the mirror Stanford bunny and an image
of the mirror engine hood. (b) RMS reprojection errors (computed against
ground truth image points). (c) RMS reconstruction errors (computed against
ground truth 3D surface points).

TABLE I
ESTIMATION ERROR UNDER NOISE LV σ = 2.0 [mm] ON bunny.

fu [%] fv [%] u0 [%] v0 [%] R [◦] Tdeg [◦] Tscale [%]
L 1.39 1.78 1.76 2.39 0.61 0.55 0.98
EL 0.94 0.94 0.07 0.10 0.12 0.11 0.28
CR 0.11 0.11 0.18 0.25 0.08 0.07 0.13

L: linear solution in Section IV-B; EL: constrained linear solution with strategy
in Section IV-C; CR: estimation using cross-ratio formulation initialized with
EL.

To evaluate the performance of our method, we added
Gaussian noise to the 2D reflection correspondences on the
reference plane with standard deviations ranging from 0 to
3.0 mm. The reflection correspondences are the input of
our method and essential to the performance. It is difficult
to obtain high quality reflection correspondences due to the
distortion caused by the reflection of the mirror surface.
Thus we added the noise to the reflection correspondences.
The typical intensity profile for the x- or y-coordinate is a
bell-shaped curve (see Fig. 8 for an example), which has
a similar characteristic as Gaussian distribution, hence we
choose Gaussian noise to model the possible noises in the 2D
correspondences. We initialized the projection matrix using
the method described in Section IV. The optimized projection
matrix together with the 3D surface points were obtained
by minimizing reprojection errors computed based on our
cross-ratio formulation. In Table I, we compared: 1) linear
solution by solving (12) in Section IV-B, denoted as L; 2)
linear solution by solving (16) after enforcing the constraints
in Section IV-C, denoted as EL; and 3) cross-ratio based
non-linear solution by solving (20) in Section V, denoted as



IEEE TRANSACTIONS ON IMAGE PROCESSING 9

ground truth no noise noise lv: σ = 1.0 noise lv: σ = 2.0 noise lv: σ = 3.0

Fig. 11. Reconstruction results of bunny and hood shapes. First and fourth rows: reconstructed point clouds under different noise levels of the bunny and the
hood, respectively. Coordinates are w.r.t world and colors are rendered w.r.t z coordinates. Note that the missing regions of the bunny are due to the lack of
correspondences in the original data set. Second and fifth rows: surfaces of the bunny and the hood generated using screened Poisson surface reconstruction
method in [32]. Third and last rows: visualization of surface point reconstruction errors.

TABLE II
CAMERA INTRINSIC AND EXTRINSIC ESTIMATION ERRORS UNDER DIFFERENT NOISE LEVELS σ FOR Stanford bunny DATASET AND engine hood DATASET.

noise lv fu [pixel] fv [pixel] u0 [pixel] v0 [pixel] R [◦] Tdeg [◦] Tscale [mm]

bu
nn

y

σ = 0.5 0.22(0.02%) 0.22(0.02%) 0.41(0.06%) 0.07(0.01%) 0.02 0.02 0.53(0.03%)
σ = 1.0 0.33(0.02%) 0.33(0.02%) 0.41(0.06%) 0.05(0.01%) 0.02 0.02 0.52(0.03%)
σ = 1.5 0.50(0.04%) 0.51(0.04%) 0.56(0.09%) 0.90(0.20%) 0.04 0.05 1.74(0.10%)
σ = 2.0 1.52(0.11%) 1.52(0.11%) 1.15(0.18%) 1.22(0.25%) 0.08 0.07 2.42(0.13%)
σ = 2.5 4.36(0.31%) 4.36(0.31%) 2.11(0.32%) 2.36(0.49%) 0.37 0.56 7.33(0.40%)
σ = 3.0 10.15(0.73%) 10.11(0.73%) 5.76(0.90%) 3.08(0.64%) 0.85 0.73 13.29(0.73%)

ho
od

σ = 0.5 0.59(0.04%) 0.59(0.04%) 0.18(0.03%) 0.71(0.15%) 0.15 0.29 1.07(0.10%)
σ = 1.0 1.43(0.10%) 1.43(0.10%) 1.14(0.18%) 0.72(0.15%) 0.20 0.26 2.45(0.23%)
σ = 1.5 2.53(0.18%) 2.56(0.18%) 1.10(0.17%) 1.43(0.30%) 0.17 0.34 5.01(0.47%)
σ = 2.0 4.87(0.35%) 4.87(0.18%) 3.08(0.48%) 2.66(0.55%) 0.33 0.35 8.38(0.79%)
σ = 2.5 7.32(0.52%) 7.32(0.52%) 4.74(0.74%) 5.37(1.12%) 0.53 0.55 14.01(1.32%)
σ = 3.0 11.53(0.82%) 11.53(0.82%) 6.55(1.02%) 7.71(1.61%) 0.54 0.86 17.57(1.66%)

The ground truth for the intrinsic parameters are fu = 1400, fv = 1400, and (u0, v0) = (639.5, 479.5). The norm of translation vectors
are 1811.2 and 1057.9 for bunny and hood, respectively.
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CR. It can be seen that our cross-ratio based formulation
can effectively improve the linear solutions. Figure 10(b) and
(c) depict the root mean square (RMS) reprojection errors
and reconstruction errors, respectively, under different noise
levels. It can be seen that the reprojection errors and the
reconstruction errors increase linearly with the noise level.
The magnitude of the reconstruction errors is relatively small
compared to the size of the object. Figure 11 shows the
reconstructed point clouds and surfaces. Table II shows a
quantitative comparison of our estimated projection matrices
w.r.t the ground truth. Among all noise levels, the errors are
below 1% for fu, fv , u0, v0 and Tscale, and angular errors
are below 1

◦ for R and T.
Moreover, as the quantization noise, which obeys the uni-

form distribution, is also typical in real situations, we further
verify the robustness of our approach to the quantization
noise by adding the uniform noise in the range of [−γ, γ]
to the 2D pixel locations. The results are reported in Table III
and Fig. 12. The errors increase linearly with the noise
level while the estimation errors are small, revealing that our
approach is robust to quantization noise.

TABLE III
ESTIMATION ERRORS ON bunny AND hood UNDER QUANTIZATION NOISE

γ = 2.0 [pixel].

fu [%] fv [%] u0 [%] v0 [%] R [◦] Tdeg [◦] Tscale [%]
Bunny 0.12 0.12 0.20 0.72 0.15 0.20 0.36
Hood 0.08 0.08 0.11 0.27 0.03 0.07 0.17
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Fig. 12. Reconstruction results under different quantization noise.

Besides, we compared our method with state-of-the-art
mirror surface reconstruction method in [15] under smooth
surface assumption and calibrated setup. Note that [15] as-
sumes the mirror surface is C2 continuous. In order to make
a fair comparison, we performed the experiment on a sphere
patch under the same setup with the Stanford bunny and
engine hood datasets. Fig. 13 depicts the comparison between
fully calibrated ([15]) and uncalibrated (proposed) methods.
The overall reconstruction accuracies are similar. While our
result is not as smooth as that of [15] due to our point-
wise reconstruction. Their result shows a global reconstruction
bias due to the B-spline parameterization for the surface (see
Fig. 13).

We consider the ideal pinhole camera model, therefore
the potential lens distortion is not taken into account in
our formulation. In practice, the lens may have radial and
tangential distortion [33]. The one-parameter radial distortion
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Fig. 13. Comparison with a fully calibrated method of Liu et al. [15]. Upper
left: ground truth. Lower left: RMS reconstruction errors. Upper right ([15])
& lower right (ours): reconstruction (blue) against ground truth (red) under
σ = 2.0. Our uncalibrated approach achieves comparable accuracy with that
of the fully calibrated method in [15].
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Fig. 14. Reconstruction results under different distortion coefficients.

is the most common form of distortion, which can be described
by

x2 = x1(1 + k1r2)
y2 = y1(1 + k1r2)

, (24)

where (x1, y1) and (x2, y2) are the undistorted and distorted
pixel locations in normalized image coordinates ([−1, 1]),
k1 is the radial distortion coefficient (positive/negative radial
distortion is also known as barrel/pincushion distortion) of the
lens and r =

√
x21 + y

2
1 . To verify the robustness of our method

to the lens distortion, we thoroughly evaluate the performance
of our method on bunny and hood shapes by introducing radial
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Fig. 15. Surface reconstruction errors of bunny. “init” indicates ray trian-
gulation based on the initial camera projection matrix by our method in
Section IV-C; “triangulation” indicates ray triangulation based on the camera
projection matrix by our cross-ratio based formulation; “cross-ratio” indicates
our cross-ration based method.
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TABLE IV
ESTIMATION ERRORS UNDER DIFFERENT DISTORTION. THE DISTORTION COEFFICIENT IS SET TO 0.02/−0.02 SEPARATELY.

δ [pix.] fu [%] fv [%] u0 [%] v0 [%] R [◦] Tdeg [◦] Tscale [%]
Bunny 2.22/2.21 0.94/0.95 0.93/0.95 1.12/1.41 1.09/1.88 0.78/0.79 0.83/0.81 6.01/5.73
Hood 3.07/3.06 1.40/1.48 1.84/1.87 1.87/2.05 1.91/1.78 1.82/1.60 1.41/1.47 7.68/7.95

δ denotes the mean pixel offsets introduced by the lens distortion.

ground truth σ = 2.0 σ = 2.0 k1 = 0.02 k1 = 0.02

Fig. 16. Normal reconstruction results of hood shape. Left to right: ground truth, normal estimation w/ correspondence noise σ = 2.0, normal estimation
error w/ correspondence noise σ = 2.0, normal estimation w/ distortion coefficient k1 = 0.02, normal estimation error w/ distortion coefficient k1 = 0.02.
The color in error maps indicates error in degree.

distortion of different levels. After introducing distortion, the
pixel locations are denormalized to the original magnitude for
camera pose estimation and surface reconstruction. We vary
the distortion coefficient k1 and measure the reconstruction
errors on bunny and hood (see Fig. 14). In Table IV, we show
the results of our approach under with k1 of 0.02/−0.02. It
can be seen that our method is generally robust to the lens
distortion.

We further compare the surface reconstruction results be-
tween the ray triangulation and our cross-ratio based method
in Fig. 15, given the camera projection matrix estimated by our
method. It can be seen that with the estimated camera projec-
tion matrix, the reconstruction accuracy of ray triangulation is
on par with our cross-ratio based formulation. As the surface
points can be obtained as the by-product of our cross-ratio
based methods, the extra ray triangulation is no longer needed.
Meanwhile, comparing with the ray triangulation results using
our camera projection matrix initialization method in Section
IV-C, our cross-ratio based method can significantly improve
the reconstruction results. In addition, we also explored the
triangulation counterpart for the optimization problem in (20),
by simply replacing the 3D point formulation in (19) with ray
triangulation (i.e., triangulating the incident and the reflected
(visual) rays). The results are reported in Table V and Fig. 17.
Though the triangulation based formulation can also improve
the results obtained by our constrained linear solution intro-
duced in Section IV-C (Table I vs Table V), the cross-ratio
formulation performs notably better. Both formulations aim
to minimize the point-to-point reprojection error. However, as
our cross-ratio based formulation also enforces the cross-ratio
constraint during optimization, it includes more geometric reg-
ularization than ray triangulation based formulation, leading to
better performance.

TABLE V
COMPARISON BETWEEN RAY-TRIANGULATION (TR) AND CROSS-RATIO

(CR) FORMULATIONS ON bunny UNDER NOISE LV σ = 2.0 [mm].

fu [%] fv [%] u0 [%] v0 [%] R [◦] Tdeg [◦] Tscale [%]
TR 0.82 0.82 1.62 1.49 0.66 0.46 0.16
CR 0.11 0.11 0.18 0.25 0.08 0.07 0.13
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Fig. 17. Surface reconstruction errors of bunny using cross-ratio and trian-
gulation based optimization formulations respectively.

After obtaining the camera projection matrix and surface
points by our cross-ratio based method, we can obtain the
normal by simply calculating the bisector of the visual ray
and incident ray. Figure 16 shows the normal estimation results
on hood. It can be seen that our method can estimate accurate
normals. In this work, we focus more on recovering the point
cloud because it contains the actual scale information of the
object.

Fig. 18. Sauce boat and two spheres in real data experiments. Top row:
sauce boat and two spheres in real experiments. Bottom row: a sweeping line
is reflected by two spheres under three distinct positions of the LCD monitor
while the camera and mirror surfaces are stationary.

2) Real Data Experiments: We evaluated our method on
a sauce boat and two spheres respectively (see Fig. 18). We
captured images using a Canon EOS 40D digital camera
with a 24-70 mm lens. A 19 inch LCD monitor was used as
a reference plane and was placed at three different locations.
We follow [24], [34], [35] to display sweeping stripes on the
monitor to establish reflection correspondences. In particular,
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TABLE VI
QUANTITATIVE RESULTS OF THE REAL DATA EXPERIMENTS.

fu [pixel] fv [pixel] u0 [pixel] v0 [pixel] R [◦] Tdeg [◦] Tscale [mm] Srms [mm]
Buc 36.70(0.63%) 21.99(0.38%) 99.10(5.03%) 100.00(8.13%) 9.12 1.00 19.16(8.23%) 2.55
Bcu − − − − 8.63 1.02 16.15(6.96%) 2.29
Buu 101.70(1.75%) 86.90(1.49%) 112.10(5.69%) 113.00(9.19%) 9.86 1.99 17.02(7.34%) 2.71
Suc 63.38(1.09%) 68.01(1.17%) 61.49(3.18%) 42.7(3.47%) 6.67 1.78 33.83(8.96%) 1.78
Scu − − − − 6.49 1.61 31.26(8.28%) 1.64
Suu 81.38(1.40%) 86.02(1.48%) 81.67(4.14%) 56.70(4.61%) 7.17 2.13 37.69(9.98%) 2.03

B and S denote the results of sauce boat and two spheres respectively. The subscripts uc, cu, and uu stand for experiments under
(1) an uncalibrated camera and calibrated plane poses, (2) a calibrated camera and uncalibrated plane poses, and (3) an uncalibrated
camera and uncalibrated plane poses, respectively. The ground truth for the intrinsic parameters are fu = 5812.86, fv = 5812.82, and
(u0, v0) = (1971.95, 1230.02). Srms stands for the RMS reconstruction error.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 19. Reconstruction results of sauce boat and two spheres. (a)-(d): reconstructions of sauce boat. Results are obtained under (a) calibrated camera with
calibrated plane poses (this result is treated as ground truth and overlaid in (b), (c) and (d) for comparison (red)); (b) uncalibrated camera with calibrated
plane poses (blue); (c) calibrated camera with uncalibrated plane poses (blue); (d) uncalibrated camera with uncalibrated plane poses (ours, blue). Note the
missing regions (in red rectangle) in the reconstructed point clouds are filled by the mesh generation algorithm and should be ignored in comparing the surface
meshes. (e)-(h): reconstructions of two spheres.

at each location, the LCD monitor shows a thin stripe sweeping
across the screen in vertical direction and then in horizontal
direction. For each position of the sweeping stripe, we capture
an image. We then obtain a sequence of images w.r.t the
vertically sweeping stripe and a sequence of images w.r.t
the horizontally sweeping stripe. We can then obtain the
correspondence on the reference plane for each image point by
examining its corresponding two sequences of intensity values.
The position of the stripe that produces the peak intensity
value in each sweeping direction then gives the position of the
correspondence on the reference plane. In order to improve the
accuracy of the peak localization, we fit a quadratic curve to

the intensity profile in the neighborhood of the sampled peak
value, and solve for the exact peak analytically.

After establishing reflection correspondences, we first es-
timated the relative poses of the reference plane using our
method described in Section III-B. We then formed 3D lines
from the reflection correspondences on the reference plane
under the two poses that were furthest apart (e.g., P0 and P2

in Fig. 5). These 3D lines were used to obtain a preliminary
solution of projection matrix using the linear method in
Section IV, which was then used to initialize the nonlinear
optimization described in Section V.

To evaluate our method, we calibrated the camera and
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reference plane poses using the Camera Calibration Toolbox
for Matlab [36]. We used the calibration result to estimate
the surface and treated it as the ground truth. This result was
compared against the result obtained using 1) uncalibrated
camera and calibrated plane poses, 2) calibrated camera and
uncalibrated plane poses, and 3) uncalibrated camera and
uncalibrated plane poses. Fig. 19 shows the reconstructed
surfaces and Table VI shows the numerical errors. We aligned
each estimated surface with the ground truth by a rigid body
transformation using the method in [37] before computing
the reconstruction error. The RMS reconstruction errors are
below 3 mm. fu and fv errors are below 2%. u0, v0 and
Tscale errors are below 10%. The angular errors are below
10
◦ for R and below 3

◦ for T. The errors in intrinsics and
extrinsics are larger than those in the synthetic experiments.
This is reasonable since accurate reflection correspondences
in real cases are difficult to obtain due to the large and
complex distortion caused by the mirror surface and varying
lighting condition. Besides, degradation from optics, such as
optics aberrations, will also introduce errors for establishing
reflections correspondences. The quality of the reflection cor-
respondences is also a key factor for other existing mirror
surface reconstruction methods. Note that existing methods are
designed under certain assumptions (e.g., convex, Cn conti-
nuity, etc), and their setups are carefully tailored or require
special equipments. Besides, there is no publicly available
dataset that can serve as a benchmark for existing methods.
As a result, it is challenging to make a fair comparison with
existing methods on real data. Therefore, we do not include
comparison with other existing methods on real data.

VIII. CONCLUSIONS

A novel method is introduced for mirror surface reconstruc-
tion. Our method works under an uncalibrated setup and can
recover the camera intrinsics and extrinsics, along with the
surface. We proposed an analytical solution for the reference
plane relative pose estimation, a closed-form solution for
camera projection matrix estimation, and a cross-ratio based
formulation to achieve a robust estimation of both camera
projection matrix and the mirror surface. The proposed method
only needs reflection correspondences as input and removes
the restrictive assumptions of known motions, Cn continuity
of the surface, and calibrated camera(s) that are being used by
other existing methods. This greatly simplifies the challenging
problem of mirror surface recovery. We believe our work can
provide a meaningful insight towards solving this problem.

Our method does have a few limitations. We assume the
surface is perfectly reflective and our formulation depends on
the law of reflection. Thus our method may not work for other
mirror-like surfaces that do not follow the law of reflection,
or mirror surfaces that do not reflect the full energy of the
incident rays. Although our cross-ratio based formulation does
not encounter degenerate cases, degenerate cases may occur in
the relative pose estimation of the reference plane. Efforts are
needed to explore methods without degeneracy for estimating
the relative poses of the reference plane from reflection corre-
spondences. Meanwhile, the region that can be reconstructed

by our method depends on the size of the reference plane.
For mirror surfaces with complex normal distribution, the
reference plane may need to be carefully placed at different
locations facing different regions of the mirror surface, and the
reference plane should be moved three times at each location.
Despite an increased number of images, extra efforts are also
required to fuse these reconstructed regions together. Besides,
in our formulation, we did not consider inter-reflection, which
is likely to happen for regions with relatively sharp changes
in the mirror surface. In the future, we would like to develop
methods to recover complete surfaces and further investigate
inter-reflection cases.
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